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NONSTATIONARY CONVECTIVE HEAT AND MASS TRANSFER IN A FLUID AT HIGH 

PECLET NUMBERS 

A. D. Polyanin and P. A. Pryadkin UDC 532.72 

The diffusion flux on the surface of a drop in a stationary Stokes flow (Rybchinskii-- 
Adamar velocity field) was determined in [i] with the help of a Laplace transformation with 
respect to time for the case of nonstationary diffusion with the reaction turned on sud- 
denly. In [2-5], the self-similar variable ~-1(t, n) (5 and ~ are the normal and tangential 
coordinates fixed to the surface of the body, t is time, ~ is the thickness of the diffusion 
boundary layer), which permitted reducing the starting equation of convective diffusion to 
a first order partial differential equation for a boundary layer of thickness 6 and to an 
ordinary differential equation for the concentration, was used to analyze nonstationary 
boundary-layer problems. Two new variables (simplifying the initial problem), which were 
also determined by solving a first-order partial differential equation, were introduced in 
[5-9]. The introduction of new variables permitted studying a number of nonstationary prob- 
lems, described by the equation of convective diffusion with time dependent coefficients 
[2-5, 7-9], for which the method in [i] cannot be used. 

In the present paper, we propose a general method for solving nonstationary problems 
of this type, based on introducing three new independent coordinates (related to the initial 
coordinates by a nonsingular transformation) and permitting studying the corresponding equa- 
tion in a unified form. 

It is shown that in the general case of initial and boundary conditions, the solution 
of the boundary-layer equation has a strong discontinuity (propagating with a finite ve- 
locity) and the corresponding solution on one side of the discontinuity is determined only 
by the initial conditions, while on the other side (at the entrance to the diffusion bound- 
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ary layer) only by boundary conditions. At the same time, in the vicinity of the discon- 

tinuity, the approximation of the diffusion boundary layer itself is no longer valid and 
there exists a thin region (of the order of Pe -~/2, Pe is Peclet's number), in which the 
concentration varies continuously and rapidly. The boundary value problem for determining 

the concentration near the discontinuity is formulated. 

i. Description of the Method. Equations for the New Variables. We will examine the 
three-dimensional problem of nonstationary convective diffusion toward the surfaces of drops 
(or liquid films) in a laminar flow of incompressible fluid. We assume that the flow field 
is known from a solution of the appropriate hydrodynamic problem. 

For the analysis, as in [9, 20], we will introduce the local orthogonal coordinate sys- 
tem 5, n, and X fixed to the (moving) reacting surface and the flow field in its vicinity~ 
For this purpose, it is necessary to give the orientation of the unit vectors at any point 
M lying near the surface and to indicate how the curvilinear coordinates are measured~ It 
is assumed that at any time a single (external) normal can be drawn toward any point on the 
reacting surface and that there exists a region in which these normals do not intersect. 
The vector normal to the surface, passing through the point M, determines the direction of 
the unit vector e~ and the magnitude of the coordinate ~, i.e., the value ~ = 0 corresponds 
to the reacting surface and gsg = l(g~, g~q, gll are the components of the metric tensor). 
The direction of the unit vector e~ is determined by the direction of the projection of the 
velocity vector of the fluid at the point M on a plane perpendicular to e~, while the unit 
vector e~ is chosen so that the system of vectors e~, en, and e~ forms an orthogonal right- 
handed triad. In such a system of coordinates, the velocity vector of the fluid at each 
point at any time t has the form u = {u~, u~, 0}. For convenience, we do not yet fix the ori- 
gin of the coordinates and the metric (gnn and glx); we will indicate these separately for 
each specific case. 

We will call the point of inflow (outflow) the critical point, lying on the surface of 
the particle, near which the normal component of the fluid velocity is directed toward 
(away from) the surface, while the streamline, leaving it, is the inflow (outflow) tra- 
jectory. 

In the general case of an incompressible fluid in a system of coordinates ~, n~ and 
(g~ = i), the dimensionless equation of the nonstationary convective diffusion in the 
approximation of a diffusion (thermal) boundary layer has the form [9, i0] 

~ + I (O* Oc a~, Oc ) a2c 
U b" 

g = g( t ,  n ,  ~-), q~ - ~ ( t ,  n, ),), 0 < t ,  ~ < ~ ,  ~ -  < a  < n  +, 

(~ -  < ~ l  <~1 +, ~ > O; ~ ( ~ - )  = ~(~+)  = O; g = [G]~=o)~ 

where e is the concentration (temperature); t is the time; g and ~ are known functions of 
the coordinates and time, determined by the shape of the body and the local velocity field 
of the fluid near its surface; Pe is the Peclet number; the values ~- and n + correspond to 
neighboring inflow and outflow trajectories. We note that the representation (I~i) in the 
boundary layer for the analog of the stream function ~ (linearity with respect to 5) in 
problems of mass transfer of droplets (bubbles) in the presence of a viscous laminar flow 
past the droplets is valid for most fluids (such as water), while in thermal problems (with 
potential flow past the droplets), it is valid for media such as liquid metals [ii]. The 
coordinate I enters into Eq. (i.i) only parametrically, so that in what follows the de- 
pendence of the functions used in this work on I is not indicated. 

Neglecting for the moment the initial and boundary conditions for Eq. (i.i), we intro- 
duce the new variables 

in such a way that the equation of convective diffusion in these variables would have the 
simplest form. For this, we require that the functions (i.I) satisfy the following system 
of first order partial differential equations 

L~ = O, L] : g - ~ l ~ ,  L~ ~ ]~, L : L ( t , ~ )  = O i # t - l - g - ~ O t ~  ( 1 , 3 )  
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whose general solution has the form 

~ = m ( t , ~ ) ,  ] = B (~)exp lnQ,,(t)d~ , ( 1 . 4 )  

where ~ is any first integral of the equations (or arbitrary function of it) 

~{ : g-i/~ (L~ : 0), (i. 5) 

while the function in the integrand in expressions (1.4) is expressed in the variables 
and m (in the integration, m is viewed as a parameter); in the second integral, the quan- 
tity marked by the index (t) is a partial derivative of in ~(t, n) with respect to n, written 
in the variables ~, m [9]; A and B are arbitrary functions that depend only on m; ~* (~- < 
n* < n +) is arbitrary. 

Equation (i.i) after the substitutions (1.2)-(1.5) reduces to the usual equation of 
heat conduction with constant coefficients 

acla~ : a~cla~% c = c(~, ~, ~). (I. 6) 

It is evident that Eq. (1.6) does not depend on the coordinate ~, which here is com- 
pletely analogous to the cyclical variables in analytical mechanics. The corresponding 
initial and boundary conditions for Eq. (1.6) must be written in the variables (1.3) and 
(1.4), which reduces the starting boundary-value problem to the usual problem of heat con- 
duction, depending on the parameter ~. 

The general expressions for the new variables (1.4) contain arbitrary functions A(m) 
and B(~) and, in this case, the form of the variable ~ is also determined to within an 
arbitrary function (a function of ~). In order for the transformation (t, ~, ~)+(~, ~, T) 
not to be singular, the Jacobian 

J -  a(/ ,a,~) l 

must  n o t  v a n i s h  i n  t h e  r e g i o n  in  which  Eq. ( 1 . 1 )  i s  d e f i n e d ,  so  t h a t  f rom t h e  p r o p e r t i e s  o f  
t h e  f u n c t i o n  ~ ( 1 . 1 )  and t h e  r e l a t i o n s  ( 1 . 4 )  and ( 1 . 5 ) ,  i t  f o l l o w s  t h a t  t h e  t r a n s f o r m a t i o n  
( 1 . 2 ) - ( 1 . 5 )  i s  n o t  s i n g u l a r  f o r  [B(~) I > 0. 

The s p e c i f i c  f o r m  o f  t h e  a r b i t r a r y  f u n c t i o n s ,  e n t e r i n g  i n t o  ( 1 . 4 )  and ( 1 . 5 ) ,  i s  ch o sen  
f rom c o n s i d e r a t i o n s  o f  c o n v e n i e n c e ,  d e t e r m i n e d  by t h e  t y p e  o f  i n i t i a l  and b o u n d a r y  c o n d i -  
t i o n s  ( s e e  Sec .  2 ) .  I t  s h o u l d  be  e m p h a s i z e d ,  h o w e v e r ,  t h a t  f o r  Eq. ( 1 . 1 )  and a l l  t y p e s  of  
i n i t i a l  and b o u n d a r y  c o n d i t i o n s ,  i t  i s  p o s s i b l e  to  u se  a n o n s i n g u l a r  t r a n s f o r m a t i o n  o f  
v a r i a b l e s  ( 1 . 2 ) - ( 1 . 5 )  ( c h o s e n  by  g i v i n g  t h e  e x p l i c i t  fo rm o f  t h e  f u n c t i o n s  A, B, and ~) 
f i x e d  once  and f o r  a l l ,  which  in  t h e  f i n a l  a n a l y s i s ,  by way o f  c o m p l i c a t i n g  ( s o m e t i m e s  c o n -  
s i d e r a b l y )  t h e  i n t e r m e d i a t e  c a l c u l a t i o n s ,  w i l l  l e a d  to  t h e  same r e s u l t s .  

2. Cho ice  o f  V a r i a b l e s .  I n i t i a l  and Boundary  C o n d i t i o n s .  When the  f u n c t i o n  ~ can  
be r e p r e s e n t e d  as  a p r o d u c t  o f  two f a c t o r s  (which c o r r e s p o n d s  to  n o n s t a t i o n a r y  r e c t i l i n e a r  
m o t i o n  o f  s p h e r i c a l  d r o p l e t s  i n  a v i s c o u s  i n c o m p r e s s i b l e  f l u i d  and s p h e r e s  i n  a p e r f e c t  
f l u i d )  

' {2(t, ~ )= :  U ( t ) a ( ~ ) ,  E =: g(n), ( 2 . 1 )  

i t  i s  c o n v e n i e n t  to  c h o o s e  t h e  v a r i a b l e s  f and ~ ( 1 . 2 ) - ( 1 . 5 )  i n  t h e  fo rm (B(~) = o - ~ ( n  *) = 
const) 

t 

] = ~01), ~ = [ I ~ a - * d ~ - -  j 'Udt .  (2.2) 
~* 0 

Here, the variables (2.2), ~ will determine the nonsingular transformation with 
Jacobian J = P~-~eg ~=(~) > 0 (~- < ~ < ~+), which coincides with the Jacobian for Mie's 
transformation of the corresponding stationary problem with U(t) = const; the expression for 

(1.4) is written out below, since its specific form will depend on the type of initial 
and boundary conditions. It should also be noted that for (2.1) the possibility of intro- 
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ducing a new (additional), third variable in the region m > 0 [by a method different from 
that proposed by (1.2-(1.5)] was indicated in [7], although it was not used therein, since 
a self-similar problem was being examined. 

If the function ~ depends only on the linear combination of t and q [which corresponds 
to wave processes on the free surface of the fluid film [3, 4] (see Sec. 5)] 

~(t, N) : Q(z), z : N --• g~ 4, (2.3) 

it is convenient to choose the variables f and ~ in the form 

/ = ~ (z) : Q (z) - •  ~ = ~ 1  - z - • I u - ~  ( z ' )  & ' .  ( 2 . 4 )  
@ 

The transformation (2.4) will be nonsingular for J = -- P~ee~u 2 ~= 0. 

In order to obtain expressions (2.2) and (2.4) for the function f, it is most con- 
venient, without using the general equations (1.4), to make use of the second equation in 

(1.3) directly. 

From these particular examples, it is evident that the choice of variable f is mainly 
determined by the velocity field of the fluid near the reacting surface~ while the choice 
of the variable ~ is determined by the velocity field and the equation of convective dif- 
fusion (i.i), and at the same time, in both cases, the choice does not depend on the initial 
and boundary conditions. 

We note that if the right side of Eq. (i.i) included a source q = q(t, q, I), then the 
final equation (1.6) after transformations (i.2)-(1.5) would have on the right side the term 
qf-2 

For Eq. (i.!), as in [8], we will distinguish two types of problems, for which the 
time-like variable T is chosen differently. In this case, the form of the variable r will 
be determined by the requirement that for the appropriate initial or boundary condition~ T 
should vanish. For this choice of T, the initial problem (i.i) will be reduced to the heat 
conduction equation with the usual initial boundary condition for �9 : 0. In what follows, 
it is shown that the solution of Eq. (i.i) in the case of arbitrary initial and boundary 
conditions, can be obtained by a simple combination of these partial solutions. 

The first type of problem corresponds to the motion of a reacting body with a variable 
velocity (from the stationary state) in a fluid with nonuniform concentration; it is assumed 

J that for t ~ 0 the concentration distribution in the flow is determined by the solution of 
the corresponding stationary equation of convective diffusion (for example, by the solution 
in [ii]). At the same time, during the course of the entire process, the boundary condition 
on the inflow trajectory is imposed [8, 9] 

= N- (case a). ( 2 .5 )  

In  t h i s  c a s e ,  t h e  e q u a t i o n  f o r  d e t e r m i n i n g  ~ ( e q u a t i o n  f o r  d e t e r m i n i n g  t h e  s p e c i f i c  
form of  the  f u n c t i o n  A(m)) i s  o b t a i n e d  by s u b s t i t u t i n g  ( 2 . 5 )  i n t o  t h e  g e n e r a l  e x p r e s s i o n  f o r  

( 1 . 4 )  f o l l o w e d  by s e t t i n g  i t  e q u a l  to  z e r o ,  i . e . ,  T(q = q-)  = 0. I t  f o l l o w s  f rom t h i s  
e q u a t i o n  t h a t  A(~) = 0 and t he  v a r i a b l e  ~ ( r e s p o n s i b l e  f o r  t h e  bounda ry  c o n d i t i o n )  has  t he  
form 

Ta : T ~ ( t , ~ ) =  j" | r~ ]~9-1(~ ,~ , )dg ,_=  j" /2(~.l,)dl,. (2 .6 )  

Here and in what follows, all quantities relating to the first and second type of 
problems are denoted by indices ~ and B, respectively; the second representation for r~ was 
obtained by a simple transformation from the variable of integration q to the variable t 
taking into account the relation ~ = ~(t, q) and the properties of the function ~; in the 
integration, ~ is viewed as a parameter. 

The second type of problem corresponds to chemical reactions that suddenly begin on the 
surface of the particle and in this case it is assumed that for 

= 0 (case ~) (2.7) 
the initial concentration distribution in the flow is given. 
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In this case, the equation for determining �9 (the variable responsible for the initial 
condition) has the form ~(t = 0) = 0 and leads to the following expression 

~5 =: ~/~ (t, ~) ::: ~a --  T~ (0, S (~o)) i"/~ (o~, l') dt', ( 2 . 8 )  

S(o , (O,  q ) )  ------ ~l. 

If the function Q can be represented in the form (2.1), then 

Ta =- j" | / g  a (~l') U-~ (t ((0, ~]')) dll' , Tt~ , .I ~ O1 (o, t')) dl ' ,  ( 2 . 9 )  
~I -- !) 

and in the case ( 2 . 3 )  and ( 2 . 4 )  

I '~(z(~ tin" ~u2(z(~ ( 2 . 1 0 )  

~l-- O' 

Using the results in Sets. 1 and 2, we now obtain the solution of several nonstationary 
problems (in cases a and ~), not examined previously [1-9]. 

3. Nonuniform Starting Concentration Distribution.__ Let us examine nonstationary con- 
vective diffusion toward a drop (bubble) in a stationary Stokes flow (Rybchinskii--Adamar 
stream function) 

=r--l, ~ = ~--O, g = 2~ = I--~ ~, ~ = cos 0 =--cos~ (3.1) 

with a nonuniform concentration distribution outside it and the reaction turned on suddenly 
on the surface at t = 0 

t = 0 ,  c=q(~), ~=0, c = 0  (q(-- I)=i), (3.2) 

where r and 0 form a spherical coordinate system fixed to the center of the drop; 8 is mea- 
sured from the direction of the oncoming flow (i.e., from the outflow trajectory); q is an 
arbitrary function that depends only on the angle O; the characteristic scales are: the 
radius of the drop a, the characteristic velocity U = U~(B + i)-* (U~ is the velocity of the 
oncoming flow, ~ is the ratio of the viscosities of the drop and the fluid surrounding it), 
and c~ is the concentration on the axis of symmetry far from the drop. We also assume that 
on the oncoming trajectory ~ = --I the concentration distribution is given by Levich's sta- 
tionary solution [ii]. The solution of this problem will determine the characteristic times 
to for the concentration to reach a steady-state regime [ii], depending on the nonuniformity 
of the initial distribution to = to(q). 

Using the expressions (2.1), (2.2), and (2.8), taking into account (3.1), gives the 
following equation for the variables (1.2) and (1.3): 

{i + ~ (3.3) t ( l - - ~ ) ,  ~ = - - t §  I = - 2 -  

' (2-- (t S ( ~ ) = t h ( 2  ) T~ -= ~ - -  ~ .  (S (~) ) ,  ~ = - T  ~") + ~ ) ~  

(1.6) with 

(3.4) 

In this case, the initial problem (i.i), (3.1), and (3.2) is reduced to Eq. 
the boundary conditions 

whose solution has the form (D is the diffusion coefficient) 

c = q  th err -= . . . . .  P e = - u .  
~a(~)--T~ th 

\ 

We n o t e  t h a t  f o r  q ( v ) ~ l  Eq. ( 3 . 5 )  t r a n s f o r m s  i n t o  t h e  r e s u l t s  i n  [1 ,  2 ,  6] f o r  t h e  
o u t e r  p r o b l e m .  I t  i s  e v i d e n t  t h a t  f o r  t-~+ ~ s o l u t i o n  ( 3 . 5 )  e n t e r s  i n t o  a s t e a d y - s t a t e  
r e g i m e  [ 1 1 ] .  

4.  N o n s t a t i o n a r y  D i f f u s i o n  w i t h  Mixed K i n e t i c s .  L e t  us  now e x a m i n e  t h e  p r o b l e m  o f  
s t a t i o n a r y  c o n v e c t i v e  d i f f u s i o n  t o w a r d  a p a r t i c l e  w i t h  a c h e m i c a l  r e a c t i o n  o c c u r r i n g  on i t s  
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surface at a finite rate kc; k is the dimensionless rate constant. In this case, the fol- 
lowing boundary conditions occur on the surface of the particle and far away from it for the 

concentration (uniform concentration is assumed far from the particle): 

= O, & / O ~  - -  k c  = 0, ~ - +  co ,  c - +  I .  ( 4 .  l )  

For both types of initial and boundary conditions (2.5), (2.7), transforming to 
variables (1.2)-(1.5), we arrive at Eq. (1.6) with the corresponding initial and boundary 

conditions 

"~ = O, c = t ,  ~ - + ~ ,  c - +  t ,  ~ = O, /('% ~ ) & / ~  - -  k P e - : / ~ c  = O. ( 4 . 2 )  

Here, the indices ~ and ~ for the variable T are omitted, and case ~ corresponds to 
substitution of the value �9 = ~ from Eqs. (2.6) into (1.6), (4.2), while the case ~ corre- 

sponds to substituting the value ~ = T B from Eq. (2.8). 

We seek the solution of the problem (1.6) and (4.2) in the form 

C(T,~(O)-----i--V~ j ~(}.,60)(T--}~)-I/2exp{ 4(i--k)]dk. (4.3) 
0 

Here, c is the solution of Eq. (1.6) and satisfies the initial and first boundary con- 
dition (4.2) for any bounded kernel ~, for which the limiting conditions are satisfied [12]: 

Jim c = I ! _  ! ~ (s (o) (T--  s d~, ]ira a-L-c : �9 (T, o)). ( 4 . 4 )  

Substituting expression (4.3) into the last boundary condition (4.2), taking into 
account the properties (4.4) and the relation P~ePf = kC, C = c(T, 0, ~), we arrive at the 
following integral equation for the surface concentration 

I~ j' Cd~. 
C =  1 -1/~-~e /(k,(o)]/~_--~-~, ( 4 . 5 )  

which generalizes the results in [13] to the nonstationary case. 

For example, in the case of a stationary Stokes flow around a drop (3.i), the equation 
for the surface concentration (4.5) with sudden switching on of the reaction (case ~) takes 
the form 

C = I Cdk 
]z'aP---~ a(.s(~) ) f (k)  ~<--k (] ' ( 'J--~ f (~t (1:))), (4.6) 

where the functions T~, f, S, and ~ are defined in (3.3). 

It is evident that for t++ ~ Eq. (4.6) goes over into the stationary equation [13], and 
in this case, the following time dependence of the surface concentration occurs in the for- 
ward critical point: 

C = ,',-- ~ B e -2~ t 

Here B(x, p, q) is the incomplete ~ function. 

We note that the problem with arbitrary kinetics for the surface reaction kF(c) can be 
viewed in a similar manner. In this case, on the right side of the equation for the surface 
concentration (4.5), F(C) will replace C in the integrand. 

5. Nonstationary Diffusion toward the Surface of a Film. Periodic Regimes. Let us 
now examine convective diffusion toward the surface of a reacting film, flowing down a 
vertical wall in a periodic regime (or toward an oscillating surface of an infinite fluid at 
rest). Under these conditions, the hydrodynamic model of motion of the film often leads to 
the following expression for the velocity components in Eq. (i.i) [3, 4] (~ is the wave 
vector; zw is the frequency): 

~( t ,  x) = U + b cos [~(x - -  •  g _~- t (x = ~). ( 5 . 1 )  
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Here, it will be shown that the results in Sets. i and 2 can be used to analyze (some 
of) the periodic solutions of Eqs. (i.i), (5.1) under the condition of complete absorption 
of the reagent on the surface of the film and constant concentration far from it 

~ = 0 .  c = 0 ,  ~ - + o o ,  c - + l  ( 5 . 2 )  

Another condition for periodicity of c with respect to t must be added to the boundary 
conditions (5.2) 

c(t) = c(t -~ 2a(nv) -1) ( 5 . 3 )  

and some normalizing condition must also be added [see below (5.6)]. 

A similar problem with the boundary condition c = 1 at x = 0 [instead of (5.3)] was 
examined in [3, 4]. 

For simplicity, we will present the intermediate results only for the case 

v = •  U = 2 ,  Ib l<t ,  

and we will write the final expression for arbitrary x, b, v, and U. 

The variables m and f are determined from Eqs. (2.3) and (2.4), which, taking into 
account (4.1), lead to (z = x-- t) 

2 
/== l q - b c o s z ,  ~ o = x - - z  - - I / - ~ E ( z ' b ' J ) '  ( 5 . 4 )  

E (z, b, l) = {; (z, b, l) for 0 ~ < z ~ . ~ ,  
(n, b, 1) + ? (z - -  a,  b, t) for .~ ~ z -<~ 2~, 

~;(z,b, 6 ) = a r c t g ( V  ~ l t g 2 )  �9 

Taking into account (5.4), the general expression for the variable ~ (1.4) can be 
written in the form [it is easiest to obtain it directly from the equation for �9 (1.3)] 

~: :--- z -i- b sin z + A((o) (z :-: x - -  :). ( 5 . 5 )  

In order that the variable T be periodic with respect to t, the condition ~(t) = 
T(t + 2~) must be satisfied, which leads to the following equation for determining ~: 

A(co) = A(,~ - -  2~ - -  <i_1 > 2~) + 2~.< / >, ( 5 . 6 )  

T O 

t 
<h> = -~.. t' hd,, <]> = t, (. ./-1)-- 

1 / t - : '  t t  
0 

where h is any periodic function with period To; <h> is the average value of h over the 

period. 

We seek the solution of (5.6) in the form 

A(r -=: p(o -}- l (p, l ----- const), ( 5 . 7 )  

from where we obtain p = <]>(I q- <[_t>)-1 while the coefficient Z can be chosen arbitrarily 
and must be determined from the normalization condition. 

Similarly, for arbitrary magnitudes of the parameters a, b, v, and U entering into 
(501), we have the following expression for the new variables (1.2)-(1.5) (I• UI 2> Ib[): 

: = O ( ~ z ) - - •  �9 .... t ,  s i n v z  ~- U - - ~  ( 5 . 8 )  
" ,~ + Viu - ~)~ - b' 

.X{V(U__x)'~--b"x-i-•215 b,U--x)} (z=x--• 

Here, T is written out to within an additive constant, and the expression for m is omitted 
(since it will not enter into the final expression), while the function E is defined in 

(5.4). 

In the variables (1.2)-(1.5) and (5.8), Eq. (i.I) reduces to (1.6) with the boundary 

conditions 

~ = 0 ,  c = 0 ,  ~ ---~o0, c - - + t .  ( 5 . 9 )  
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The periodic solutions of the problem are 

e=erf (VP-e ~ I f (Z) !_~ % = const (% > T(~, 0)). (5.10) 

In order to determine the magnitude of To, it is necessary to give an additional 
normalization-type condition. For example, for chemical reactors (mass exchangers) with 
finite length L, it may be assumed that the average flow rate of the reagent Q (which is 
determined by the difference between the mass of the reagent at the inlet and outlet of the 
reactor) is known. Calculating with the help of (5.10) for arbitrary To the total inflow 
of the reagent to the surface of the film over a period and equating to the flow rate Q, we 
obtain an algebraic (transcendental) equation for determining ~o: 

L 

For sufficiently large x, we obtain from expression (5.10) an asymptotic equation for 
the local diffusion flow on the surface of the film (in the case (5.4)) 

From this expression, it is evident that the local diffusion flow (its asymptotic be- 
havior) decreases inversely proportional to the square root of the distance from the inlet 
to the reactor with a coefficient of proportionality that depends on the average values of 
f and f-~ over a period of the oscillations. 

For a nonoscillating film (b = 0), the local diffusion flow will be determined by the 
expression j(O) (5.12). Forming the ratio, we obtain (for x-~=) 

\ 1 / 2  
<y (h)> I - - ~  ~ > I (5.13) 

It is evident from here that oscillations can greatly increase the intensity of the 
mass transfer process to the surface of the film. 

6. Case of Discontinuous Solutions. Equation (1.6) (or (!.i)) admits partial solu- 
tions c = F(~) that depend only on ~ (F is an arbitrary function). 

If initially such a solution becomes discontinuous when passing through some charac- 
teristic, e.g., for t = 0 the conditions 

q < O, c = c - ,  h > O, c = c+ (~ (0 ,  O) == O, s i g n  ~ ( 0 ,  ~)  = s i g n  ~) 

are satisfied, then the evolution of this solution (in the entire space without boundary 
conditions) will also be determined by a discontinuous function c = c- with ~(t~ q) < 0 and 
c = c + for ~(t, q) > 0. This indicates that in boundary layer problems involving nonsta- 
tionary convective diffusion, described by Eq. (i.i), a situation with a discontinuity in 
the concentration can arise (solution of the shock-wave type)~ Such solutions are a result 
of the hyperbolic nature of the boundary-layer equation (i.i) with respect to the variables 
t and q. 

In order to illustrate a discontinuity of this kind, we shall examine the problem of 
nonstationary convective diffusion to the surface of a sphere, around which there is a sta- 
tionary flow of a perfect incompressible fluid with velocity U~ at infinity We assume that 
on the part of the sphere near the point of inflow, there is a lacquered inclusion, i.e., 
in the region 0 ~ 8 ~ v -- 8o, 0 < 8o < ~ there is a total absorption of matter; initially, 
the concentration in the flow is constant and equal to unity, while for e = ~ -- 8o (at the 
inlet to the boundary layer), a constant concentration equal to p = const is maintained. 

Choosing ~/=U~ as a characteristic velocity scale, and the radius of the sphere as the 
characteristic length scale, we find that the concentration distribution (in the region 
0 ~ e ~ ~ -- Co) in this case is described by Eqs. (!.I, (3.1) with the following initial 
and boundary conditions: 

t : O, c - -  l ,  ~ = O, c = O, F = ~o, c : p (Fo : - - C o s O o > - - i  ). ( 6 . 1 )  

The characteristic of Eq. (i.1), satisfying the condition ~,(0, po) = 0 (this condition 
was chosen for convenience), has the form 
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~ .  = ~ .  (t, ~, ~o) = ~ (t, ~ ) -  ~ (0, ~0), ( 6 . 2 )  

where the function ~(t, ~) is defined in (3.3). 

For t = O, the characteristic m, = 0 separates regions with different values of the 
concentration: c = 0 for m < 0 and c = 1 for m > 0, while the point of discontinuity moves 
with a variable velocity [which is determined by the right side of (1.5)] and is described 
by the equation 

~,  = ~ ,  (t, ~o) = [(t + No) e~ --  (l - -  No)] [(i + No) e~ + (t - -  ~)1-1. (6 .3 )  

In this case, in the region ~o < P < V*, the concentration distribution is described 
by Eq. (1.6) (case ~) with the boundary conditions 

~ = 0 ,  c = 0 ,  T ~ , = T ~ ( ~ ) - - ~ ( ~ o ) = 0 ,  e = p ( ~ , < 0 ) ,  ( 6 . 4 )  

while in the region V* < V < 1 by Eq. (1.6) (case ~) with the boundary conditions 

~=0, c=O, ~ = 0 ,  c = I  (~.>0). (6.5) 

Here, the variables ~, T o, and r B are defined by relations (3.3). 

The solution of Eq. (1.6) for boundary conditions (6.4) is given by Eq. (3.5) with 
q = p and T B replaced by xa*, while the solution of the problem (1.6) and (6.5) is given 
by expression (3.5) with q = i. For this reason, the total solution of the boundary layer 
problem of diffusion in the entire region ~o ~ p ~ 1 has the form (0 is the unit Heaviside 

function) 

c =  pO (-- o . )  erf \ 7~(~) =~ ~ / -}- 0 (o . )err  ~ 4 - - ~ ~ ) ) /  ( 6 . 6 )  

where the function S(~) is defined in (3.3). 

It is evident from this equation that the concentration c with the transition through 
the characteristic m = 0 (~ = ~,(t)) is discontinuous; in particular, for p = 0 the concen- 
tration in the region m, < 0 equals zero, while for m, > 0, it is given by the second term 

in (6.6) and differs from zero. 

It should be noted that a solution of the type (6.6) for the conditions (2.1) and 
g~l in the case of initial and boundary conditions c(t = 0) = c(x = 0) = c~ was obtained in 
[7], but the most important property of this solution, namely, its discontinuity at ~, = 0, 

was not noted therein. 

Equation (6.6) shows that there exists a region m, > 0 in which the boundary conditions 
have no effect at the entrance to the boundary layer with ~ = ~o. This indicates that the 
velocity of propagation of the perturbations, determined by Eq. (1.5), is finite and also 
that there exists a region of influence m, < 0 of the boundary condition with ~ = ~o. A 
similar situation also occurs in the more general case (see See. 7) and, in particular, is 
typical for fluid films (since there is no singularity there ~(~-) ~ 0 at the entrance to 

the diffusion boundary layer). 

It is clear that in reality there cannot be such a discontinuity, while in the vicinity 
of a moving discontinuity front there exists a narrow region (of thickness O(Pe-:/~)) with 
high gradients, in which the concentration varies smoothly and rapidly. In this region, 
molecular diffusion in the tangential direction toward the surface of the sphere becomes 
important, and the equation of the boundary layer (!.I) is no longer applicable. For this 
reason, in order to analyze the concentration distribution near the front, it is not neces- 
sary to examine the complete equation of convective diffusion. 

Let us investigate the limiting behavior of solution (6.6) for ~o§ (~o ~ --I). Taking 
into account the property lira 0).(t, ~, ~t0)~= [ oo(~ >- i) and passing to the limit with ~o§ 

~0~--1 

--i in (6.6), we find that the concentration distribution in this case is continuous and is 
described only by the second term in (6.6) [or Eq. (3.5) with q~l], and coincides with 
[2, 6]. This means that for 0o = 0, the concentration distribution in the flow is (com- 
pletely) determined only by the initial condition (6.5) [i.e., it is impossible to satisfy 
the initial and boundary condition (6.4) and (6.5) simultaneously]. In addition, passing 
in the expression obtained to the limit with ~ § [i.e., in (3.5) with q~l], we find that 
the concentration distribution in the nonstationary case differs from the stationary case 
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by a factor (i - e-at) -I/a in the integrand in the probability integral; and for t > C and 

r < oo c(t, r, ~) < i. 

7. Case of Arbitrary Initial and Boundary Conditions. In the general case, the ini "r 
tial and boundary conditions for Eq. (i.i) have the form (~- = 0) 

t = O ,  c = c~ (~1, ~); ( 7 . i )  

" q = O ,  c - - - - c ~ ( t , ~ ) ;  ( 7 . 2 )  

~=0,  c=O. (7.3) 

Here, the boundary condition on the reacting surface is taken in the form (7.3) for sim- 
plicity. 

In what follows, we assume that for 0 ~ ~ < co, ~(t, n) > O, and g > 0 (i.i) (including 
the boundary n = O, i.e., ~(t, O) > 0), so that the Jacobian J in the entire region 0 ~-~ 

< oo differs from zero and the transformation (1.2)-(1.5) is not singular. 

Arguing as in Sec. 6, in the general case, we find that the region of influence of 
the boundary condition (7.2) is given by the inequality 

o)(t, q)~< 0 (~(0, o) =: o, ~l > o, ~o(0, ~ l ) >  (8, 

where ~ is the particular solution of the first equation (1.4), while the velocity of the 
front (discontinuity) is determined by Eq. (1.5). The boundary condition (7.2) does not 
affect the solution of (i.i), (7.1)-(7.3) in the region ~ > 0, while in the region m < 0 
the solution does not depend on the initial condition (7.1) and is determined only by the 
boundary condition (7.2). 

In the region w < 0, we will transform to variables (1o2)-(1o5), (2.6) w, ~, ~, while 
in the region m > 0 to the variables m, 6, T B (2.8). In each of these regions, the concen- 
tration distribution will be described by Eq. (1.6) with the corresponding initial condition 

"t'~,l~-= O, c = c~ ( 7 . 4 )  

where a corresponds to w < 0, while B corresponds to ~ > 0; correspondingly, expressions are 
obtained for c~,~ from the initial and boundary conditions (7.1) and (7.2) by transforming 
to the new variables using Eqs. (1.2)-(1.5), (2~ and (2.8). 

The solution of the problem (1.6) and (7.4) has the form (y = ~, ~) 

e = O(--ro)%(o), ~, %) -1- (-)((,))cl~(o) , ~, z~), ( 7 . 5 )  
c o  

c~, 2 | /n-~ exp - -  4.~v ] - -  exp 4x v 

I n  t h e  v i c i n i t y  o f  t h e  f r o n t  m -- O, t h e  t a n g e n t i a l  d e r i v a t i v e s  o f  t h e  c o n c e n t r a t i o n  a r e  
l a r g e  and t h e  e q u a t i o n  o f  t h e  d i f f u s i o n  b o u n d a r y  l a y e r  ( 1 . 1 )  i s  no l o n g e r  a p p l i c a b l e ,  and 
f o r  t h i s  r e a s o n ,  h e r e  i t  i s  n e c e s s a r y  t o  e x a m i n e  t h e  c o m p l e t e  e q u a t i o n  o f  c o n v e c t i v e  d i f -  
f u s i o n .  I n  t h i s  c a s e ,  t h e  p r o b l e m  f o r  t h e  c o n c e n t r a t i o n  d i s t r i b u t i o n  i n  t h e  v i c i n i t y  o f  t h e  
f r o n t  c a n  be  f o r m u l a t e d  w i t h  t h e  h e l p  o f  t h e  me thod  o f  j o i n e d  a s y m p t o t i c  e x p a n s i o n s  [14 ,  
1 5 ] .  

I n t r o d u c i n g  i n  t h e  v i c i n i t y  o f  t h e  d i s c o n t i n u i t y  n = q * ( t ) ( ~  = O) s t r e t c h e d  c o o r d i n a t e s  

t, Y =: ]/]-~e~, X = ]/]Te'e(o(t, ~1), ( 7 . 6 )  

and substituting them into the complete equation of convective diffusion and separating out 
the leading terms in the expansion with Pe-~o (it is assumed that Y = O(i), X = O(i)), we 
obtain the following equation for the concentration c* in the vicinity of the front ~ = ~*(t) 
(~ = O) : 

Oc* x Oc* 02c * ,9 ~ {D 02c* 
ot e (t)  ~ OF - -  or'~ 4 .  - , ,  ~ ,  

.... 7~- t,n:n*(t)' s (t) = ~ <n:n*(t)" 

(7.7) 
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Equation (7.7) must be supplemented by the conditions for joining for IXl -~o with solu- 
tions of (7.5), as well as the initial and boundary conditions (7.1) and (7.3) 

x - ~ - ~ o ,  ~ . - ~ ( o , ~ , - ~ ( t ) ) ,  x - . + o o ,  ~ * - ~ ( o , ~ , ~ ( t ) ) ,  (7.8) 
Y .... O, c * ~ O ,  t = O ,  e*--@(--X)e~ 

T* (t) -= -~ (t, ~* (t)), -~ (t) _=-~ (t, ~* (t)). 

Equation (7.7) with the initial and boundary conditions (7.8) gives the concentration 
distribution in the vicinity of the point of discontinuity. 

In spite of the fact that Eq. (7.5) incorrectly describes the concentration distribu- 
tion in the vicinity of the front, it gives (asymptotically) the correct result in the 

�9 --I 2 reglon Iml > O(Pe 7 ), pe-~o and determines the leading term in the expansion (with respect 
to the Peclet number) for the total diffusion inflow of matter to the reacting surface. 

In the general case, g-i/2~ = O(in _ -le ) for ~§ and it can be shown that for 0 
e < 1 the solution of the problem (I.i) and (7.1)-(7.3) is given by Eqs. (7.5), while for 
E ~ i, the solution of Eqs. (I.i) and (7.3) is determined only by the initial condition 
(7.1) and does not depend on the boundary condition (7.2) (instead of which, it is neces- 
sarily to give the mild condition that the derivative is bounded I(Sc/3n)n=n- I < ~) and is 
given by expression c8 (7.5) (the case with e = 1 was examined in Sec. 6). 

In conclusion, we note that the transformation (1.2)-(1.5) permits solving more compli- 
cated problems involving multicomponent isothermal reactions, occurring on reacting surfaces 
(for high Peclet numbers) and described by systems of equations of the type (i.i). 

We thank V. S. Berman, Yu. P. Gupalo, and Yu. S. Ryazantsev for their attention to this 
work and for useful discussions. 
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